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The quantum Brownian motion of a particle in a cosine periodic potential V(x)=-V, cos(x/x,) is treated
using the master equation for the time evolution of the Wigner distribution function W(x,p,?) in phase space
(x,p). The dynamic structure factor, escape rate, and jump-length probabilities are evaluated via matrix con-
tinued fractions in the manner customarily used for the classical Fokker-Planck equation. The escape rate so
yielded is compared with that given analytically by the quantum-mechanical reaction rate solution of the
Kramers turnover problem. The matrix continued fraction solution substantially agrees with the analytic

solution.
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I. INTRODUCTION

The Brownian motion in a potential is ubiquitous in phys-
ics and chemistry, particularly to do with the nature of meta-
stable states and the rates at which these states decay. Typical
examples are current-voltage characteristics of Josephson
junctions, the rate of condensation of a supersaturated vapor,
dielectric and Kerr effect relaxation in liquids and nematic
liquid crystals, dynamic light scattering, chemical reaction
rate theory in condensed phases, superparamagnetic relax-
ation, polymer dynamics, nuclear fission and fusion, and so
on [1-4]. Now the classical theory of the Brownian motion is
well established and is based either on the Langevin equation
[1] or on its accompanying Fokker-Planck equation [5].
However, a theory of dissipation based on the classical
Brownian motion is often inadequate particularly at low tem-
peratures because it ignores quantum effects. Quantum noise
arising from quantum fluctuations is also important in nano-
scale and biological systems. We mention [3] the noise as-
sisted tunneling and transfer of electrons and quasiparticles.
The characteristics of such quantum noise vary strongly with
temperature and at high temperatures a crossover to Johnson-
Nyquist noise essentially governed by the classical Brownian
motion takes place. Yet another aspect of the subject which
has come to the fore in recent years is the quantum mechan-
ics of macroscopic quantum variables such as the decay of a
zero voltage state in a biased Josephson junction, flux quan-
tum transitions in a superconducting quantum interference
device [4] and the possible reversal by quantum tunneling, of
the magnetization of a single domain ferromagnetic particle.
All these considerations necessitate a theory of quantum
Brownian motion particularly one which addresses directly
the issue of the quantum-classical correspondence [6] via a
quantum analog of the classical Fokker-Planck equation.
Such an evolution equation will allow dynamical parameters
such as escape rates, correlation times, susceptibilities, etc.,
to be calculated from the eigensolutions of that equation in a
manner analogous to those of the Fokker-Planck equation.
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Moreover, it will become possible to compare asymptotic
solutions for parameters such as escape rates yielded by re-
action rate theory with those calculated from the quantum
master equation.

If one wishes to include quantum effects in a diffusion
equation treatment, however, a difficulty immediately arises,
namely, one cannot speak, because of the uncertainty prin-
ciple [7,8], of a particle having simultaneously a well defined
position and momentum, i.e., the concept of a phase point
has no meaning in the quantum world. Therefore, one cannot
define as in classical statistical mechanics a probability that
the particle has a particular position and a particular momen-
tum. Hence one cannot define a true phase space probability
distribution for a quantum mechanical particle. Nevertheless
functions bearing some resemblance to phase space distribu-
tion functions namely quasiprobability distribution functions
have proven [7-11] very useful in quantum mechanical sys-
tems as they provide insights into the connection between
classical and quantum mechanics allowing one to express
quantum mechanical averages in a form which is very simi-
lar to that of classical averages. Thus they are ideally suited
to the study of the quantum-classical correspondence.

The description of quantum mechanics via phase space
distributions advanced by Wigner [7] is an ideal starting
point for the formulation of semiclassical quantum master
equations. The Wigner phase space formalism [7,8] in quan-
tum mechanics allows one to employ tools of classical phys-
ics in the quantum realm. For closed quantum systems, the
time behavior of the Wigner function is governed by an evo-
lution equation equivalent to the Schrddinger equation,
which in the limit #— 0 becomes Liouville’s equation for the
phase space distribution function in classical mechanics.
Therefore, the Wigner formalism provides a natural quan-
tum-classical connection.

We should remark that the quantum Brownian motion in a
potential may also be treated using many other methods such
as numerical simulations [12—15], the reduced density matrix
[16,17], path integrals [18], etc. In general, these permit a
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deep understanding of the dynamics of dissipative quantum
systems. Moreover, many problems concerning quantum ef-
fects on diffusive transport properties, activated barrier
crossing, etc., have been solved. However, in spite of the
progress achieved these methods possess certain practical
disadvantages. For example, a simple time evolution equa-
tion for the reduced density matrix does not exist [19]. More-
over, path integrals have been usually confined to harmonic
oscillator models since in general it is difficult or indeed
impossible to evaluate them for any other potentials [18]. In
spite of the formal power of numerical simulation methods,
yielding numerically exact solutions, the understanding and
interpretation of the qualitative behavior of the relevant
physical quantities, is sometimes not at all obvious from
them. One would therefore essentially expect that only a
combined use of the latter complementary approaches may
yield a comprehensive understanding of the quantum dynam-
ics of the Brownian particle in a potential.

Up to the present, little in the nature of detailed solutions
of semiclassical master equations for the quantum phase
space distribution functions describing quantum Brownian
motion in an arbitrary external potential V(x) has appeared in
the literature (see, e.g., Refs. [20-22]). Theoretical develop-
ments have usually been undertaken for a quantum Brownian
harmonic oscillator as treated by Agarwal [23] and others
(see, e.g., Refs. [24-27], and references cited therein). How-
ever, recently Garcia-Palacios and Zueco [28,29] have pro-
posed an effective method of solving the master equation for
the quantum Brownian motion in an anharmonic potential
V(x). Their ideas suggest how Brinkman’s representation of
the classical Fokker-Planck equation as a partial differential
recurrence relation in configuration space [30] and its asso-
ciated solution methods based on matrix continued fractions
via a suitable spatial basis for the observables [1,5] could be
naturally extended to the quantum regime.

Inspired by these ideas we have recently proposed a quan-
tum master equation for the Brownian motion of a particle in
a potential V(x) [31]. Specifically we have demonstrated how
the Wigner stationary distribution for closed systems can be
used to formally establish a semiclassical master equation
allowing one to study the quantum-classical correspondence.
Here we show in detail how to solve this master equation for
particular quantum systems. In order to illustrate this we
consider a particle moving in the periodic potential

V(x) ==V, cos(x/xy), (1)

where x is the position of the particle and x is a character-
istic length. Both the classical and quantum Brownian mo-
tion in periodic potentials have been used, e.g., to model the
diffusion in solids, premelting films, and surfaces (see, for
example, Refs. [32-34]). Furthermore, Brownian motion in
periodic potentials arises in a number of other important
physical applications. We mention the current-voltage char-
acteristics of the Josephson junction [35], mobility of supe-
rionic conductors [36], a laser with injected signal [37],
phase-locking techniques in radio engineering [38], dielectric
relaxation of molecular crystals [39], the dynamics of a
charged density wave condensate in an electric field [40],
ring-laser gyroscopes [41], stochastic resonance [42,43], etc.
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Analytical approaches to the problem are usually based on
an ingenious asymptotic method originally devised by Kram-
ers [44] in connection with thermally activated escape of
particles from a potential well. His method allows one to
determine closed form asymptotic equations for the escape
rate in the limits of very low and relatively high dissipation
to the heat bath. In this context we must remark that the
Kramers escape rate problem in a periodic potential is quali-
tatively different from that for a metastable well because the
periodic potential is multistable. Thus the particle having es-
caped a particular well may again be trapped due to the ther-
mal fluctuations in another well. Moreover, jumps of either a
single lattice spacing or of many lattice spacings are pos-
sible. Thus the escape rate in a periodic potential is called the
“jump” rate [45]. The Kramers idea was later elaborated
upon by Mel’nikov [46] and Mel’nikov and Meshkov [47].
They proposed, based on a Wiener-Hopf equation, a univer-
sal formula (that is valid for all values of the dissipation) for
the escape rate. Thus they solved the problem of the Kramers
turnover between very low and relatively high dissipation,
i.e., the calculation of the escape rate I" from a potential well
for all values of the damping. Later Grabert [48] and Pollak
et al. [49] presented a complete solution of the classical
Kramers turnover problem showing that the Mel’nikov turn-
over formula for the escape rate can be obtained without his
ad hoc interpolation between the weak and strong damping
regimes. We remark that the theory of Pollak et al. [49] is
also applicable to an arbitrary memory friction and not just
in the “white noise” (memoryless) limit. A detailed compari-
son of numerical and analytical approaches to the Brownian
motion in the cosine periodic and tilted cosine periodic po-
tentials has been given by Ferrando er al. [45] and Coffey er
al. [50]. Moreover, in order to estimate the quantum decay
rate for all values of damping, Mel’nikov [46] and Rips and
Pollak [51] have further extended the classical method of
evaluation of the escape rate I' to account for quantum tun-
neling in a semiclassical way. By applying this approach to a
cosine periodic potential, Georgievskii and Pollak [52] have
obtained a universal expression for the quantum rate I" above
the crossover temperature between tunneling and thermal ac-
tivation for the quantum Brownian dynamics in that poten-
tial.

Here we solve the semiclassical master equation for the
quantum Brownian dynamics in a periodic potential equation
(1). In particular we evaluate the dynamic structure factor.
This factor allows one to evaluate various physical param-
eters [5,45]. Another of the most important characteristics
associated with the Brownian motion in either a single-or a
multiwell potential is the friction and temperature depen-
dence of the greatest (overbarrier) relaxation time 7 (or the
inverse of the escape rate). The results of exact solutions
yielded by the continued fraction method for the damping
dependence of 7 will be compared here with those of the
Mel’nikov universal equation for the quantum Kramers rate.
Such a comparison is yet another purpose of this paper. Thus
the validity of the semiclassical approach may be ascer-
tained.
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II. QUANTUM MASTER EQUATION IN PHASE SPACE

Wigner [7] showed that quantum mechanics can be refor-
mulated in terms of a phase space (x,p) quasiprobability
distribution

1

W(x p t) = wa p(x+ —yx— ly)e—ipy/ﬁdy
” 2'7Tﬁ —oo 2 ’ 2 s

where 7 is Planck’s constant and p(x,x’)={x|p|x’} is the den-
sity matrix. In particular, Wigner’s formulation provides a
useful tool for introducing quantum corrections to classical
models of dissipation such as many body collisions or
Brownian motion [25,28,29,53-59]. For quantum Brownian
motion, the semiclassical master equation for the transla-
tional Brownian motion of a particle in a potential V(x) can
be derived by proceeding to the high temperature limit. This
is equivalent to treating the system as a quantum mechanical
particle embedded in a classical bath [22]. Hence the follow-
ing semiclassical master equation for the Wigner distribution
function W(x,p,t) has intuitive appeal [25,28,29,57,58]

w . N
;+MWW=MDW, (2)

where the operator M w 1s the evolution operator for the
closed system (quantum analog of the classical Liouville op-
erator)

M W_EM ﬂ/ﬂ}v “ (lﬁ/2)2r (92r+lv(92r+lW
wr = = 2r+1)! 2+l z9p2r+1

m dx  dx dp

and the operator M p accounts for effects due to the coupling
to the environment (dissipation and fluctuations)

wow="\pwen Wip W

= — + — + - |-
b apl " P PP op P o
Here Dp, Dp , and Dxp are coordinate, momentum, and time
dependent parameters which are to be determined. In the
classical limit, #— 0, Eq. (2) reduces as shown, e.g., in Refs.
[24,57], to the Klein-Kramers (Fokker-Planck) equation and
the coefficients D,, D,,, D,, become

D,=v,

D,,=yml/B, D,,=0,

where B=1/(kT), kT is the thermal energy and v is a dissi-
pation (damping) parameter (measure of the strength of the
coupling to the bath). In the quantum case we have evaluated
D,, D,,, D,, in the approximation of frequency indepen-
dent damping [31], where D,,, D,,,, D,, in Eq. (2) are inde-
pendent of the time [25,26]. In the high temperature limit,
this approximation may be used in a wide range of the model
parameters both in the limits of weak and strong damping
[59]. In this approximation the explicit form of the master
equation (2) to A2 is [31]
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The main advantage in applying Wigner’s phase-space
formulation of quantum mechanics to the quantum Brownian
motion in a potential is that his formulation proceeds via the
master equation (2). This equation is a partial differential
equation in phase space akin to the Fokker-Planck equation
thus operators are not involved. Furthermore, the phase-
space representation suggests how powerful computational
techniques developed for the Fokker-Planck equation [5]
may be extended to the quantum domain. Using these tech-
niques quantum effects on diffusive transport properties can
in principle be estimated for arbitrary potentials. For illustra-
tion we consider a particle moving in the periodic potential
equation (1). Our present objective is to understand qualita-
tively how quantum effects treated in semiclassical fashion
alter the classical Brownian motion in a periodic potential.
Thus now we shall apply matrix continued fractions to cal-
culate various parameters such as the dynamic structure
function, the escape rate, etc., directly from Eq. (3) and com-
pare the results so obtained with available analytic solutions.

Oy PN VW VW

II1. SOLUTION OF THE MASTER EQUATION (3)

In order to represent the quantum master equation as a
differential recurrence relation for the statistical moments,
we make the following rescaling in Eq. (3):
t'=tln,

x'=xlxg,  p'=punllmx),

Ux')=-gcosx’, A=pHh%487),

’ | 2
g=pV, Y =my, n=\pmxy2.

We then have

W oW 19U W A FPUPW
St T Y s
ot ox" 20dx"ap’ 4 ox"ap
"9 FU\ oW
=Xz 2p’W+(1+2A—,2)—, L@
2 ap’ ox'=/ dp

To investigate the process whereby the particle traverses
the periodic potential we must obtain the nonperiodic solu-
tion of Eq. (4) [5]. Thus we make the ansatz [5]

1/2
wik,x',p’ 1" )e ™™ dk, (5)
—-1/2

Wx',p'.1t") =

where w is periodic in x" with period 277 and it is assumed
that k is restricted to the first Brillouin zone, —1/2<k
=< 1/2. The periodic function w can then be expanded in a
Fourier series in x and in orthogonal Hermite functions
H,(p') in p' [5,45], viz.,

041117-3



COFFEY et al.

e_p/z_U(x,)/zi % Cnok,t') -
wlkx',p',t") = ———=5— —E=—H,(p")e™".
207 e N2 "

(6)

By substituting Eq. (6) into Eq. (5), we obtain from Eq. (4)
after some algebra that the Fourier coefficients ¢, ,(k,t’) sat-
isfy the eleven term differential recurrence relation

Ecn,q + y,[nclz,q - Ag \/l’l(l’l - 1)(Cn—2,q+1 + Cn—Z,q—l)]

. [ A

= l\/l’l/z[(q + k)cn—l,q + g(cn—l,q+] - Cn—l,q—l)/4]
+iN(n+1)/2[(g + k)cn+l,q - g(Cn+1,q+1 - Cn+1,q—1)/4]
+ iAg\e"n(n - 1)(” - 2)/8(Cn—3,q+l - Cn—3,q—l)' (7)

By invoking the general method for solving matrix
differential-recurrence equations [20,21], we have the solu-
tion of Eq. (7) for the spectra ¢, ,(k, w)=/ ﬁcn,q(k,t)e"'“”dt in
terms of matrix continued fractions (details of this solution
are given in Appendix A).

IV. CALCULATION OF THE OBSERVABLES

Just as in the classical case, having determined c, ,(k,?),

we can evaluate the dynamic structure factor §(k, w) defined
as

S(k,w) = f ’ S(k,H)e"dt, (8)
0

where S(k,7)=(e 0O s the characteristic function of
the random variable x(¢)—x(0), i.e., the displacement of the
particle as it wanders through the wells, and the angular
brackets (---), mean equilibrium ensemble averaging. The
dynamic structure factor plays a major role in neutron and
light scattering experiments [5]. In the present context vari-
ous physical parameters such as the escape rate, diffusion

coefficient, etc., can be evaluated from S (k,w). The charac-
teristic function S(k,#’) is calculated in a manner analogous
to the classical case [5,45]

S(k,l’) — <eik[x'(t’)—x’(0)]>0

L[S

XW(x',p' ,x,pi.0)dx"dxjdp' dp|,

o) o0 oo o) 1/2
— f f f f eik(x'—x(’))f e—ikl(x'—x(’))
—oJ o J 0 -172

Xw(ky,x",p’ x4, po.1)dkdx’ dxidp’ dp|)

[here x'(0)=x/, x'(t)=x"]. The function W(x',p’.x{,p,t)
=f1/12,26‘ik("'"‘<’))w(k,x’,p’,x(’),p(’),t)dk satisfies Eq. (4) with
the initial condition

W('x,’p,7x(,)ap(/:|’0) = Wst(x(l)ap(,)) L (9)
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where W(x(,p,) is the equilibrium Wigner distribution
function [which is a stationary solution of the master equa-
tion (3) [31]]; see Appendix A, Eq. (A5)]. Noting that for a
periodic function f(x) and —1/2<k,k;<1/2 [5]

i 2
f ei(k-kl)xf(x)dx =d8k-k) flx)dx,
0

—0

and utilizing Eq. (6) and the orthogonality properties of the
Hermite functions H,, the characteristic function S(k,z") be-
comes a series of the Fourier coefficients ¢ ,(k,t') as [5]

2@ (27 oo o0
S(k,t") = J f f f wik,x',p" x4, po-0)dx’ dxydp' dp,
0o Jo Jowd o

27 (oo *°
=f f w(k,x',p',t")dx"dp' = E a,coq(k,t'),
0 —0

g=—>

where
21
a,= (2’7T)_lf e—iqx—U(x’)/de/
0
and
27 (oo
wk,x',p',t') = J f wik,x',p’ x4, ph.D)dxydpg.
0 -0

Thus the dynamic structure factor §(k,w) then becomes a
series of the EO,q(k,w), viz.,

Stk,w)= 2 a &4k, 0). (10)

g=—=

Thus having calculated S(k,w), we may evaluate the es-
cape (jump) rate I" as follows [45]. The function S(k,7) can
be approximated at long times by an exponential

S(k,t) = h(k)e "™ (11)

The characteristic (longest) relaxation time 7(k) can then be

extracted by representing Eq. (11) in the frequency domain
as [45]

) = lim S(k,0) — S(k, )

0=0  iS(k,w)

The escape (jump) rate I' is given by
12
= 2f 7 (k)dk (12)
0

allowing one to estimate the average longest relaxation time
of the system since 7~I"~!. Now 77!(k) can be expressed in
terms of the jump rate I" and the jump length probabilities P,
(the probability of a jump of length |n|xy/2) as the trigono-
metric series [45]
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o

(k) =T P,[1 - cos(2mnk)]. (13)

n=1

Thus the jump-length probabilities P,, may then be obtained
in integral form as the Fourier coefficients of the Fourier
expansion of 77!(k) as detailed in Ref. [45]

172
P,=-2I"" f 7 (k)cos(2mnk)dk. (14)
0

For high potential barriers, in the jump diffusion limit, the
jump-length probabilities P, allow one to evaluate both the
mean-square jump length (/?) and the diffusion coefficient D
as [45]

(Y = 47x2>, n*P,, (15)
n=1
D = (T2){P?). (16)

The above equations describe in detail the diffusion process
in the periodic potential.

V. MEL’NIKOV’S UNIVERSAL EQUATION

As already mentioned, Mel’nikov [46] has extended his
solution of the classical Kramers turnover problem to include
quantum effects in a semiclassical way. He did this by sim-
ply inserting the quantum mechanical transmission factor for
a parabolic barrier into the classical integral equation for the
energy distribution function yielded by the Wiener-Hopf
method in the Kramers turnover region. In the approximation
of Ohmic damping, he derived a universal formula for the
quantum rate I'™ valid for all values of damping above the
crossover temperature between tunneling and thermal activa-
tion

FM= FIHDY' (17)

Here I'yyp is the quantum escape rate in the intermediate to
high damping (IHD) region (y'=1) and Y is the quantum
depopulation factor. Furthermore Larkin and Ovchinnikov
[60] have generalized Mel’nikov’s approach to a system
coupled to a bath with Johnson-Nyquist quantum thermal
noise spectrum and Mel’nikov and Siito [61] have applied
this method to quantum Brownian motion in a tilted cosine
potential [the zero tilt case corresponds to Eq. (1)]. Later
Rips and Pollak [51] gave a consistent solution of the quan-
tum Kramers turnover problem demonstrating how the
Mel’nikov universal equation (17) can be obtained without
his ad hoc interpolation between the weak and strong damp-
ing regimes. Finally Georgievskii and Pollak [52] treated the
escape rate problem in a periodic cosine potential showing
that the quantum depopulation factor Y in Eq. (17) is

1
Y =4 J sin?(7k)F(k)dk. (18)
0
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The function F(k) is (in our notation)

) = a sin aJw | 1 — ¢ 2R
SO T )L T 14 e R0 2R cos(2mk)
d
X (19)
cosh(2ax) —cos a
© N e
wy cosh(VAy) — cos(2VAxy)
I?(Xj =T K e 5 — y.
V3A J . y sinh(VAy)cosh*[ my/(216g)]

(20)

Here a=\3A(\'y'>+2g-7') and 5=87'\2g. If absolute pre-
cision is unnecessary the function R(x) from Eq. (20) can be
replaced by its classical limit R(x)=~ &(x*+1/4). We may
now estimate using the Wigner function method the quantum
escape rate I'iyp [and thus T™ via Eq. (17)] by adapting
results of the classical Kramers escape rate theory [44] (see
Appendix B). The quantum escape rate I'yyp is then

—_

: ! ! —
FIHD=2_(\°")’2+28—7)€ %, (21)
T
where
inh(% /2
g o Qesinh(®Bo/D) ooy (22)
w, sin(fBw/2)

is the quantum correction factor (in full agreement with
quantum transition state theory [19]), w.=|V"(x,)|/m=w,
=+V"(x,)/m. The form of Eq. (21) appears to be consistent
with our (Sec. IT) conception of a quantum Brownian particle
as embedded in a classical bath with the quantum effects in
the bath-particle interaction arising via the dependence of the
diffusion coefficient on the derivatives of the potential in the
quantum master equation. The simple result follows from the
exact solution for the Wigner equilibrium distribution func-
tion for the harmonic oscillator given in Refs. [8,9].

In the context of solutions of the IHD quantum Kramers
rate, we remark that the analysis of Wolynes [62] as well as
that of Pollak [63] involves quantization of both bath and
particle just as do methods [64] based on Langer’s analytical
continuation of the free energy. The quantum mechanical en-
hancement factor = yielded by all these calculations is for
Ohmic friction [19,62]

- ﬁ o>+ 2mn/hpB)? + 2 ylh B
- o>+ 2an/hB)? + 2mnyih B’

(23)

If the condition 7 yB<<21r is fulfilled, we have the TST result
as limyg, oEw=E [19]. Thus recovering the result embod-
ied in Eq. (21). The damping independent = is then a fair
approximation to Ey suggesting that replacement of the
equilibrium distribution function by that of the closed system
may ultimately yield reasonable semiclassical approxima-
tions to the actual time dependent quantum distribution. A
comprehensive analysis of Eq. (23) has been made by
Hinggi et al. [65] and also by Weiss [19]. They show how
the product Eq. (23) may be written as gamma functions
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FIG. 1. The real and imaginary parts of the normalized dynamic
structure factor S(k, w)/S(k,0) vs wm for various values of barrier
parameter g=5, 7, 9, and 11; the damping coefficient y'=10 and
k=0.2. Solid and dashed lines: the matrix continued fraction solu-
tion with A=0.02 and A =0 (classical case), respectively. Stars and
open diamonds: Eq. (25) with A=0.02 and A=0, respectively.

consequently Wigner’s original quantum correction is recov-
ered when 7> (y/w,)’T..

Finally the jump-length probabilities can be estimated as
[45]

172
f sin?( k) F(k)cos(2 mnk)dk
pr—_=" (24)

n 172 ’
f sin?(7k)F(k)dk
0

where F(k) is defined by Eq. (19) and the superscript M
denotes analytical calculation (as in Ref. [45]). The results
yielded by the analytical theory may now be compared with
the matrix continued fraction solution.

VI. RESULTS AND DISCUSSION

The real and imaginary parts of the normalized dynamic

structure factor S(k,w)/S(k,0) are shown in Fig. 1 for vari-
ous barrier heights g with the damping parameter y' =10,
and wave number k=0.2. For comparison, we also show in

this figure the pure Lorentzian spectra
S(k, 1
Mo __L_ (25)
S(k,0) l+iowT

where the relaxation time 7,=7,,(k) is related to the escape
I'™ from the universal equation (17) via I'M=2 (l)/ 27';41 (k)dk.
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FIG. 2. The normalized longest relaxation time 7/ 7 vs ' for the
barrier parameter g=5 and various values of the quantum parameter
A =0 (classical case), 0.01, 0.02, and 0.03. Solid lines: the universal
equation (17). Dashed lines: the THD equation (21). Open circles:
the matrix continued fraction solution of the master equation (4).
Symbols: the matrix continued fraction solution of Eq. (4) with the
constant diffusion coefficient D,,,=ym/B.

Apparently the simple equation (25) describes perfectly the
low frequency part of the normalized dynamic structure fac-
tor S(k,w)/S(k,0).

The greatest relaxation time 7=1""! predicted by the turn-
over formula Eq. (17) and the inverse decay rate calculated
numerically by matrix continued fractions are shown in Fig.
2 as functions of the damping parameter ' for various val-
ues of the quantum parameters A (the curves and open
circles corresponding to A=0 are the classical results). The
IHD [Eq. (21)], asymptotes for 7 are also shown for com-
parison. Using the Wigner stationary distribution W and im-

posing the condition M pW4=0 gives the correct dependence
of the escape rate on the quantum parameter A (7 decreases
with increasing A). If the condition ]\;IDWst:O is not fulfilled
(for example, the diffusion coefficient D,, is regarded as a
constant), the behavior of the decay rate is not reproduced at
all (see Fig. 2). The quantitative agreement in damping be-
havior may be explained as follows. The escape rate as a
function of the barrier height parameter g for large g is ap-
proximately Arrhenius-like and arises from an equilibrium
property of the system (namely, the stationary distribution at
the bottom of the well). On the other hand the damping de-
pendence of the escape rate is due to nonequilibrium (dy-
namical) properties of the system so that the Mel’nikov ap-
proach [46] should yield the relaxation time for all values of
the damping. The greatest relaxation time 7 predicted by the
Mel’nikov universal equation (17) and the inverse decay rate
calculated numerically via matrix continued fractions are
shown in Fig. 3 as functions of 9’ for various barrier heights.
The THD [Eq. (21)] asymptotes for 7 are also shown for
comparison. The higher the barrier parameter g the more
pronounced is the quantum correction.

The results of calculations of the jump-length probabili-
ties P, and Pﬁl” from Eqgs. (14) and (24) are shown in Fig. 4
for A=0 (classical case) and A=0.02. The numerical results
are consistent with an asymptotic exponential decay of the
PnM . However, for large n and small friction parameter, 7y’
deviations from the exponential behavior may appear [45].

In spite of the very good agreement between the numeri-
cal results and the universal equation (17) for A <0.03, a
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FIG. 3. 7/7m vs 7' for various values of the barrier parameter
g=5,7,9, and 11. Solid and dotted lines: the universal equation
(17) for A=0.02 and A=0 (classical case), respectively. Dashed
lines: the THD equation (21) for A=0.02. Open circles: the matrix
continued fraction solution of Eq. (4). Symbols: the matrix contin-
ued fraction solution of Eq. (4) with the constant diffusion coeffi-

cient D,,,=ym/B.

difference between numerical and analytical results exists in
the THD region for larger values of A. The disagreement
indicates that in order to improve the accuracy for these val-
ues of A, additional terms of the order of A2, etc. should be
included in the master equation. These higher order quantum
correction terms to the master equation (3), may be calcu-
lated, in principle, to any desired degree r of A%". However,
with increasing r, the correction terms become more compli-
cated. In particular, the explicit form of the master equation
(2) containing the terms up to o(A?) is

W pdW VW R2PVFW kP FPVIW
o e rerer T,
gt maox dxdp 240 Ipd 1920 ox° 9p’

J h2 2 h4
=Y pW+ ﬂ 1+ B V’ - B4 2
ap B 12m 1440m

2
Jorv o2 ]|
m ap

We emphasize that we use the equilibrium Wigner func-
tion W(x,p) for vanishing damping (y—0). In quantum
systems, however, the equilibrium distribution Wy(x,p) is
damping dependent [19]. The damping dependence of
W,(x,p) is unknown for arbitrary V(x). However, W (x,p)
always reduces to Wg(x,p) in the high temperature limit.
Moreover, the difference between W, (x,p) and W (x,p) may
be negligible in a large range of variation of the model pa-
rameters. Thus one would expect that the evolution equation
(3) is a reasonable approximation for the kinetics of a quan-
tum Brownian particle in a potential V(x) when Bhy=<1.

The justification of the master equation (3) for the quan-
tum Brownian motion of a particle in a periodic (cosine)
potential (by showing that the solution of that equation for
the greatest relaxation time is in agreement with that pre-
dicted by quantum rate theory) and the successful extension
to the quantum case of the matrix continued fraction methods
associated with the classical Fokker-Planck equation are our
main results. In particular the dependence of the diffusion
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FIG. 4. The jump-length probabilities P, and PQ’I for the barrier
parameter g=5, damping parameter y'=0.1, and two values of the
quantum parameter A=0 (up and down triangles; classical case)
and A=0.02 (stars and crosses). Up triangles and stars: Eq. (14);
down triangles and crosses: Eq. (24).

coefficient on the derivatives of the potential (with conse-
quent lowering of the potential barrier) arising from the an-
satz of a Wigner stationary distribution for the equilibrium
solution of the open system successfully reproduces escape
rates predicted by the quantum generalization of the Kramers
escape rate theory and its various extensions to the turnover
region as applied to the cosine potential. Furthermore, the
successful extension of the classical matrix continued frac-
tion method [1,5] to the semiclassical quantum master equa-
tion allows one to accurately calculate in semiclassical fash-
ion quantum corrections to the appropriate dynamical
quantities such as correlation functions and susceptibilities
(see the calculation of the dynamic structure factor). This is
in general impossible using quantum reaction rate theory
since that theory as presently formulated does not involve an
explicit master equation. We further remark that the agree-
ment obtained between escape rates calculated from quantum
reaction rate theory in the manner of Georgievskii and Pollak
[52] and those from the master equation (3) (see Figs. 2 and
3) also constitutes a verification of quantum rate theory for
the potential in question. The above considerations suggest it
is obviously worthwhile extending the present study of Eq.
(3) to other quantum systems such as the Brownian motion
in a periodic potential with tilt, the double-well potential, etc.
This will allow one to study the interplay of quantum tun-
neling, thermal fluctuations, and dissipation in such systems.
In particular one will be able to evaluate in semiclassical
fashion quantum effects in the spectra of relevant dynamical
quantities and the influence of quantum tunneling on the
high-temperature behavior of their spectra. We reiterate that
the dependence of the diffusion coefficient on the derivatives
of the potential arising from the imposition of the Wigner
stationary distribution is crucial. If this dependence is not
taken into account, e.g., considering the diffusion coefficient
as constant, the characteristic lowering of the barrier pro-
duced by the quantum tunneling near the top of the barrier
cannot be reproduced neither can one regain the results of the
quantum reaction rate theory.

Our calculations which have been outlined for mechanical
systems with separable and additive Hamiltonians may also
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be extended to particular (nonseparable) spin systems such as
a single domain ferromagnetic particle since the giant spin
Hamiltonian of the particle may be mapped onto an equiva-
lent single mechanical particle Hamiltonian. This transfor-
mation is of particular importance concerning the existence
of macroscopic quantum tunneling phenomena in such ferro-
magnetic particles [66] and also in the discussion of the
crossover region between reversal of magnetization by ther-
mal agitation and reversal by macroscopic quantum tunnel-
ing which is of current topical interest [67].
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APPENDIX A: MATRIX CONTINUED FRACTION
SOLUTION

First we introduce the column vectors

Cpot—1(k,t")

Cn(t) = Cn—l,O(k,t,)

cn—l,l(k’t’)

Hence the scalar multi-term recurrence equation (7) can be
rearranged as the five term matrix differential recurrence re-
lation

d
Ecn(t’) =Q, C, . (1) =y (n=1C, (") +Q;, - C,py (1)

+ A[qn : Cn—Z(t,) +r,- Cn—3(t,)]v (Al)
where the matrix elements of Q;, q,, r, are given by
. o [2n—-1=%1 _g
[Q;]q,p =1 T|:(CI + k) 5q,p + Z(éq p—1 5q,p+1):| >

1= q,p+1) >

(n—l)(n 2)(n-3)
[I' g.p = \/ ( q9.P—

a4y, =2gY N(n=1)(n=2)(5, 1 +

and &,, is Kronecker’s delta. Next we use perturbation
theory t0 find the solution of Eq. (Al) treating A as the
customary small parameter so that we seek a solution as

C, (1) =C%t") + ACL(t"). (A2)

Substituting Eq. (A2) into (A1), we have the matrix three-
term differential recurrence relation for Cg(t’) in the zero-
order of perturbation theory

2 p+l),

LU =Q; - CLy (1) = ¥ (= DEYEN + Q- Cl (1)
(A3)

and in the first order of perturbation theory the forced matrix
three-term differential recurrence relation for C,',(t’), viz.,
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TC (1) =Q; - C,y(t") = ¥ (n = C,(t")

+Q C+1(t)+R(t)

where R,,(t’)=q,,oC2_2(t )+r, CO ().
By invoking the general method [1,5,28,29] for solving
three term matrix recursion equations, we have the exact

(A4)

solution for the zero order spectrum 62(S)= I Cg(t)e‘”dt in
terms of a matrix continued fraction, viz.,

Cl(s) = A,(5)CY0),

Cos)=S;-C°,(s)=S; S, -+ S7A,(5)C0),

where S =A,(s)Q, and the matrix continued fraction
A, (k,s) is defined by the recurrence equation

A () ={[s+ ¥ (n-1)IT- QA1 (9)Q,, )"
In like manner, we also have the exact solution for the first

order spectrum C}(k,s) in terms of a matrix continued frac-
tion, viz.,

Ci(s) = A;(s)C}(0) + A (5)S} - SI[C}(0) + F],
where S;=Q7_|A,(s) and

n(qn ! S;—Z + rn)S;—3 T SE AI(S)C(I)(O)
n=4
Here we have noted that C2(0)=0, n=2 and C;(O)=0,
Cl(0)=0, n=4.

The initial condition vectors CS(O) and C,ll(O) can be cal-
culated just as in the classical case [5] by using the initial
condition at =0 for W(x',p’,x(,p(,0)=W(x),p0), Eq. (9).
However, instead of the Maxwell-Boltzmann distribution of
the classical theory, the equilibrium Wigner distribution
function W(x)),p;) now has the form [31]

12 !
W (xp,po) = Z 7 e™Po "V 1 4 A[U"?(x))

+(2py” =3)U" ()]}, (AS)
where the partition function Z is given by
2
Z=v\m| {1+ AU ()= 200" (x})}e V0 dx;
0

=Z[1-Agl(g)/1y(g)].

Here Z,=27"%I)(g) is the classical partition function and
I(x) and I,(x) are modified Bessel functions of the first kind.
Equations (5), (6), (9), and (A8) yield the initial conditions
for ¢, (1) as

1 ! r
T (H (e U,

rf0) = ==

where the brackets (- ), mean the average over W(x},p().
By representing y4(0) via perturbation theory as cn 4(0)
—c (O)+Ac (O) we have the initial conditions for c (O)
and ¢l (0), viz.,

n.q
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2
Cg’q(()) — \\‘J WZ&IJ eiqxé—U(X(’))/Zd‘x(/) — 2773/2Z(511|q|(g/2) ,
0
1 [ -1 o 12(..1 ner gll(g)
cogq(O) =\7Zg U'(xg) = 2U"(xp) + =——
0 1o(g)

. ’ !
X equo—U(xO)/de(/)

_ 1,(g)
=-27"7; 1[4 2—g$]1q(8/2),

2
. ’ r
U//(x/)equo—U(xo)/de(/)

¢} (0)=\277! f

0
_8r0 0
= \E[Co’qH(O) +¢04-1(0)].

Having determined é,(k,s):é(l)(s)+Aéi(s), we can
evaluate the dynamic structure factor §(k,w) in terms of
Cp gk, w) as

oo

Sk, w) = 5 Wm 2 ) (008 ,(kw).

g=—=

APPENDIX B: ESCAPE RATE IN THE IHD LIMIT

In order to compare the exact numerical solution with the
escape rate obtained from the Kramers theory [44] we adapt
the procedure described for the intermediate to high damping
classical case in [68,69]. In the THD limit for the cosine
potential given by Eq. (1) it is sufficient [46] to consider the
escape rate from a single well only. The escape rate consid-
ering an isolated well with a source of particles at point a
(the bottom of the well) and a potential barrier at point ¢ is
then defined by

J (P/m) Wsl(xc‘?p)dp

Mp=""= (B1)

f W (x,p)dpdx
well

Here n, is the number of particles in the bottom of a potential
well at point a, j,. is the current across the barrier top at point
c. The integrals in Eq. (B1) can be estimated via steepest
descents by approximating the Wigner functions Wg(x,,p)
and W(x,p) [which are the equilibrium solutions of Eq. (4)
near the points a and c] by those of the harmonic oscillator.
The number of particles in the well n, is given by

n,= J f Wst(X,P)dXdP = f Wa(x’p)dXdp
well -®

—00

ahe BV

= GG (52

where x, is the bottom of the well. Here we have approxi-
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mated the Wigner function W(x,p) [which is the equilib-
rium solution of Eq. (3) near the point a] by that of the
harmonic oscillator, viz. [23],

W (x p) ~ sech(ﬁﬁa) /2)6 BV(x,)—- (p2+m W, xz)[tanh (Bhw,/2)/mhw, ]

where w,=V"(x,)/m, and X=x—x,. In order to calculate the
current j,. through the barrier at ¢, one needs the Wigner
stationary solution near the top (point c). Here the Wigner
function is approximated by that of the inverted harmonic
oscillator potential, namely,

’ 2
W(x’,p’) - e—BV(xC) Sec(,Bﬁwc/Z)e_m(p 2—w(,x 2)[tan(Bﬁwc/2)/ﬁwc]’
(B3)

where w,=+/|V"(x,)|/m, p'=p/m and x' =x—x,. Furthermore,
near the top we have from Eq. (3)

W, W, 9 W,
St o —E = ' Wt Dy |, (B4
ox ap ap’ dp
where D/, =(yhw./2m)cot(Bhw,./2). Equation (B3) has the
form of a Boltzmann distribution and satisfies Eq. (B4). This
fact allows us to write following Kramers [44,65] the non-
equilibrium solution W(x’,p’) near the barrier as

Wolx',p') = CF(x',p')e =™ (Bs)
where C=e P sec(hw,B/2) and B’ =m tan(hw.B/2)/
(hw,). The function F(x',p') is a crossover function which
has the equilibrium distribution in the depths of the well,
varies very rapidly in the vicinity of the barrier and vanishes
beyond the barrier as in the classical Kramers case [44,66].
Consequently that function must satisfy the boundary condi-
tions

!
1, x' — oo,

F(x'.p") —>{ (B6)

0, x'— —oo.

By substituting Eq. (B5) into Eq. (B4) and noting that
D, B'=vy/2, we have the differential equation for the
crossover function as in the classical case [44,64,65]

IF L 209 > F , oF
— twx — = It .
p &x’ 4 &pl pPr ap/z ‘yp apr
The solution of Eq. (B7) is of the form F(x',p")=F(p’
—ax'). By substituting F(p'—ax’) into Eq. (B7) and intro-
ducing a new variable é=p’—ax, we have

> F

[(a-—y)p - x’]— +D, p’ﬁ_fz =0.

(B7)

(B8)

Equation (B8) simplifies to an ordinary differential equation
if wi:(a—y)a or

a—y=\y2/4+w3—y/2

(this is the condition that the eigenvalue associated with the
unstable barrier crossing mode is real), namely,

(a- y)éﬁr i

Drr_=0. B9
(7§+ pPp 352 ( )
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The solution of Eq. (B9) satisfying the boundary conditions
Eq. (B6) is

1 [&@=92Dy,
F(O)=— J " ey, (B10)

N

—00

The current j, is then given by

PHYSICAL REVIEW E 75, 041117 (2007)

Je= mj p'W.0,p")dp’

—00

=7
\NTJ —0 —0

* "[a=y)2D 1+
mC p,e_ﬁ,p,zfl’ a=n2by1) e_yzdydp'

he BV
2 sin(fBw/2)

Substituting Egs. (B2) and (B11) into Eq. (B1) then yields
the escape rate ['yyp.

(V4 + o = 12). (B11)
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